Principles of GPS

Warning: count(): Parameter must be an array or an object that implements Countable in /hermes/bosnacweb09/bosnacweb09ad/b1528/ipg.lindatierney/public_html/wp-content/plugins/q-and-a/inc/functions.php on line 252

The below routines convert from X, Y, Z to Lat/Lon/Alt and the reverse.These functions assume the WGS-84 reference system and do not accommodate other datums.

// For reference, The X, Y, Z coordinate system has origin at the mass center

// of the Earth, with Z axis along the spin axis of the Earth (+ at North pole).

// The +X axis emerges from the Earth at the equator-prime meridian intersection.

// The +Y axis defines a right-hand coordinate system, emerging from the Earth

// at +90 degrees longitude on the equator.

 The Local Tangential Plane (LTP) coordinates are in latitude/longitude/altitude where North latitude is + and East longitude is +. Altitude is in meters above the reference ellipsoid (which may be either above or below the local mean sea  level).

 Note: the below code was extracted from working software, but has been editedfor this document.

// Define some earth constants

#define MAJA (6378137.0) // semi major axis of ref ellipsoid

#define FLAT (1.0/298.2572235630) // flattening coef of ref ellipsoid.

// These are derived values from the above WGS-84 values

#define ESQR (FLAT * (2.0-FLAT)) // 1st eccentricity squared

#define OMES (1.0 – ESQR) // 1 minus eccentricity squared

#define EFOR (ESQR * ESQR) // Sqr of the 1st eccentricity squared

#define ASQR (MAJA * MAJA) // semi major axis squared = nlmaja**

void ConvertECEFToLTP(double nlecef[3],

double * nllat,

double * nllon,

double * nlalt )

{ // Convert from ECEF (XYZ) to LTP (lat/lon/alt)

double nla0,nla1,nla2,nla3,nla4,nlb0,nlb1,nlb2,nlb3;

double nlb,nlc0,nlopqk,nlqk,nlqkc,nlqks,nlf,nlfprm;

long int nlk;

double ytemp, xtemp;

/*——————————————-*/

/* b = (x*x + y*y) / semi_major_axis_squared */

/* c = (z*z) / semi_major_axis_squared */

/*——————————————-*/

nlb = (nlecef[0] * nlecef[0] + nlecef[1] * nlecef[1]) / ASQR;

nlc0 = nlecef[2] * nlecef[2] / ASQR;

/*——————————————-*/

/* a0 = c * one_minus_eccentricity_sqr */

/* a1 = 2 * a0 */

/* a2 = a0 + b – first_eccentricity_to_fourth*/

/* a3 = -2.0 * first_eccentricity_to_fourth */

/* a4 = – first_eccentricity_to_fourth */

/*——————————————-*/

nla0 = OMES * nlc0;

nla1 = 2.0 * nla0;

nla2 = nla0 + nlb – EFOR;

nla3 = -2.0 * EFOR;

nla4 = – EFOR;

/*——————————————-*/

/* b0 = 4 * a0, b1 = 3 * a1 */

/* b2 = 2 * a2, b3 = a3 */

/*——————————————-*/

nlb0 = 4.0 * nla0;

nlb1 = 3.0 * nla1;

nlb2 = 2.0 * nla2;

nlb3 = nla3;

/*——————————————-*/

/* Compute First Eccentricity Squared */

/*——————————————-*/

nlqk = ESQR;

for(nlk = 1; nlk <= 3; nlk++)

{

nlqks = nlqk * nlqk;

nlqkc = nlqk * nlqks;

nlf = nla0 * nlqks * nlqks + nla1 * nlqkc + nla2 * nlqks +

nla3 * nlqk + nla4;

nlfprm= nlb0 * nlqkc + nlb1 * nlqks + nlb2 * nlqk + nlb3;

nlqk = nlqk – (nlf / nlfprm);

}

/*——————————————-*/

/* Compute latitude, longitude, altitude */

/*——————————————-*/

nlopqk = 1.0 + nlqk;

if ( nlecef[0] == 0.0 && nlecef[1] == 0.0 )/* on the earth’s axis */

{

/* We are sitting EXACTLY on the earth’s axis */

/* Probably at the center or on or near one of the poles */

*nllon = 0.0; /* as good as any other value */

if(nlecef[2] >= 0.0)

*nllat = PI / 2; /* alt above north pole */

else

*nllat = -PI / 2; /* alt above south pole */

}

else

{

ytemp = nlopqk * nlecef[2];

xtemp = sqrt(nlecef[0] * nlecef[0] + nlecef[1] * nlecef[1]);

*nllat = atan2(ytemp, xtemp);

*nllon = atan2(nlecef[1], nlecef[0]);

}

*nlalt = (1.0 – OMES / ESQR * nlqk) * MAJA *

sqrt(nlb / (nlopqk * nlopqk) + nlc0);

} // ConvertECEFToLTP()

typedef struct

{

DOUBLE Lat; // in radians, + = North

DOUBLE Lon; // in radians, + = East

DOUBLE Alt; // in meters above the reference ellipsoid

} LTP;

typedef struct

{ // Earth-Centered, Earth-Fixed in WGS-84 system

DOUBLE X; // all values are in meters

DOUBLE Y;

DOUBLE Z;

} ECEF;

void ConvertLTPToECEF(LTP *plla, ECEF *pecef)

{ // assumes input is in WGS-84, output is also in WGS-84

double slat, clat, r;

slat = sin(plla->Lat);

clat = cos(plla->Lat);

r = MAJA / sqrt(1.0 – ESQR * slat * slat);

pecef->X = (r + plla->Alt) * clat * cos(plla->Lon);

pecef->Y = (r + plla->Alt) * clat * sin(plla->Lon);

pecef->Z = (r * OMES + plla->Alt) * slat;

return;

} // ConvertLTPToECEF ()

// Given a current lat/lon, compute the direction cosine matrix cen[3][3]. Then, to

// compute the updated velocity N, E, D from either current X,Y,Z or velocity(X,Y or Z),

// use the matrix as follows:

// Velocity(North) = cen[0][0] * velocity(x) +

// cen[0][1] * velocity(y) +

// cen[0][2] * velocity(z);

// Velocity(East) = cen[1][0] * velocity(x) +

// cen[1][1] * velocity(y) +

// cen[1][2] * velocity(z);

// Velocity(Down) = cen[2][0] * velocity(x) +

// cen[2][1] * velocity(y) +

// cen[2][2] * velocity(z);

void E2NDCM (double lat, double lon, double cen[][3])

{

//

//

// Row CEN[0][i] is the North Unit vector in ECEF

// Row CEN[1][i] is the East Unit vector

// Row CEN[2][i] is the Down Unit vector

//

//

double slat, clat, slon, clon;

slat = sin (lat);

clat = cos (lat);

slon = sin (lon);

clon = cos (lon);

cen[0][0] = -clon * slat;

cen[0][1] = -slon * slat;

cen[0][2] = clat;

cen[1][0] = -slon;

cen[1][1] = clon;

cen[1][2] = 0.0;

cen[2][0] = -clon * clat;

cen[2][1] = -slon * clat;

cen[2][2] = -slat;

return;

} // end E2NDCM ()

United States Inventek Systems $$ 2012-02-22T11:50:06-05:00 2018-06-26T02:16:48-04:00